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In this paper, we study the high temperature or low connectivity phase of the
Viana–Bray model in the absence of magnetic field. This is a diluted version of
the well known Sherrington–Kirkpatrick mean field spin glass. In the whole
replica symmetric region, we obtain a complete control of the system, proving
annealing for the infinite volume free energy and a central limit theorem for the
suitably rescaled fluctuations of the multi-overlaps. Moreover, we show that free
energy fluctuations, on the scale 1/N, converge in the infinite volume limit to a
non-Gaussian random variable, whose variance diverges at the boundary of the
replica-symmetric region. The connection with the fully connected Sherrington–
Kirkpatrick model is discussed.
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1. INTRODUCTION

Diluted mean field spin glasses attract a great interest among physicists and
probabilists, for at least two reasons. First of all, due to their finite degree
of connectivity, they represent a sort of intermediate situation between fully
connected models and realistic spin glasses with finite range interactions.
Secondly, many random optimization problems arising in theoretical
computer science are mapped in a natural way into the study of the ground



state of diluted mean field spin glass models. The mean field character of
these systems makes them exactly solvable, at least in the framework of
Parisi theory of replica symmetry breaking. (1) Recently, many results have
been obtained in this direction, culminating in the resolution of the K-sat
model within the framework of ‘‘one-step replica symmetry breaking’’ in
ref. 2. Much less is know from the rigorous point of view, two remarkable
exceptions being refs. 3 and 4. In ref. 3, through a suitable extension of the
interpolation methods introduced in refs. 5 and 6 for fully connected
models, S. Franz and M. Leone proved, for a wide class of diluted models,
that the thermodynamic limit for the free energy density exists, and that
it is bounded below by Parisi solution with replica symmetry breaking. In
ref. 4, instead, M. Talagrand proved that replica symmetry holds for suffi-
ciently high temperature or low average connectivity.

In the present work we concentrate on the case of the Viana–Bray
model, (7, 8) where each spin interacts through two body couplings of
random sign with a finite random number of other spins, even in the infi-
nite volume limit. This is a diluted version of the well known Sherrington–
Kirkpatrick (SK) model. (1, 9) We identify the replica symmetric region,
and we obtain a complete control of the system there. In particular,
through a suitable extension of the ‘‘quadratic replica coupling method’’
we introduced in ref. 10, we prove that annealing holds for the free
energy, in the infinite volume limit. Moreover, as in ref. 11, we prove
limit theorems for the fluctuations of (multi)-overlaps and of the free
energy. While the fluctuations of the multi-overlaps on the scale 1/`N
turn out to be Gaussian in the infinite volume limit, like for the SK
model, free energy fluctuations (on the scale 1/N) tend to a non-Gauss-
ian random variable, whose variance diverges at the boundary of the
replica symmetric region. The validity of our method depends crucially
on the assumption that there is no magnetic field. Indeed, it is only in
this situation that, at high temperature and low connectivity, annealing
holds for the free energy and the order parameter is trivial, all multi-
overlaps being essentially zero.

The organization of the paper is as follows. In Section 2 we give the
basic definitions concerning the model, and in Section 3 we discuss the role
played by the multi-overlaps in its thermodynamical description. The rela-
tionship between the model under consideration and the fully connected
one is considered in Section 4. In Sections 5 and 6, we identify the replica
symmetric region and we prove annealing for the free energy. Finally,
in Sections 7 and 8 we prove limit theorems for the fluctuations in the
annealed region, while Section 9 is dedicated to conclusions and outlook to
future developments.
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2. DEFINITION OF THE MODEL

The Hamiltonian of the Viana–Bray model, (7) for a given configura-
tion of the N Ising spin variables si=±1, i=1,..., N, is defined as

HN(s, a;J)=− C
taN

m=1
Jmsimsjm . (1)

Here, taN is a Poisson random variable of mean value aN, for some a > 0,
i.e.,

P(taN=k)=p(k, aN) — e−aN
(aN)k

k!
k=0, 1, 2,..., (2)

while {Jm} is a family of independent identically distributed (i.i.d.) symme-
tric random variables, and the integer valued random variables im, jm are
independent of each other, as well as of taN and of the Jm’s, and are uni-
formly distributed on the set {1, 2,..., N}. We denote by J the dependence
of the Hamiltonian on the whole set of quenched disordered variables
taN, Jm, im, jm. The parameter a fixes the average degree of connectivity of
the system. Indeed the number of different sites, which interact with a given
spin variable, behaves approximately like a Poisson random variable of
parameter 2a, for large values of N. This is to be compared with the case of
the SK model, where any spin interacts with all the other N−1. A second
important difference with respect to the SK model is that, in the present
case, the infinite volume limit of the system does depend on the probability
distribution r(J) of Jm. In the case r(J)=1/2(d(J−1)+d(J+1)), the
Viana–Bray model is closely related to the so called 2-XOR-SAT
problem (12) of computer science. In the course of this work, we do not
specify the form of r(J), but for simplicity we assume J to be a bounded
random variable

|J| [ 1. (3)

More general cases can be considered, at the expense of some additional
technical work.

The partition function ZN(b, a;J), the disorder dependent free energy
fN(b, a;J), the Gibbs state wJ and the quenched free energy −bAN(b, a)
are defined in the usual way, for a given value of the inverse temperature b:
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ZN(b, a;J)=C
{s}
e−bHN(s, a;J) (4)

fN(b, a;J)=−
1
Nb

ln ZN(b, a;J) (5)

wJ(O)=ZN(b, a;J)−1 C
{s}

O(s) e−bHN(s, a;J) (6)

AN(b, a)=
1
N
E ln ZN(b, a;J)=−bEfN(b, a;J). (7)

Here, O is a generic function of the spin variables, and E denotes expecta-
tion with respect to all quenched random variables:

E(.)=EtaNE{Jm}E{im}E{jm}(.). (8)

Like in the case of fully connected models, it is possible to prove that
fN(b, a;J) is self-averaging when the system size grows to infinity, and to
give bounds, exponentially small in N, on the probability of its fluctua-
tions. The precise result is stated and proved in Appendix A.

As usual, one introduces real replicas as independent identical copies
of the system, subject to the same disorder realization, and denotes with
WJ(.) the disorder dependent product Gibbs state

WJ=w
(1)
J é w (2)J é · · · , (9)

where the state w (a)J acts on the ath replica. Moreover, the average O .P,
involving both thermal and disorder averages, is defined as

O .P=EWJ(.). (10)

A very important role is played by the multi-overlaps between n con-
figurations s (1),..., s (n), defined as

q1 · · · n=
1
N

C
N

i=1
s (1)i · · ·s

(n)
i . (11)

Of course,

−1 [ q1 · · · n [ 1. (12)

Notice that for n=2 one recovers the usual definition of the overlap as
normalized scalar product between two configurations.

534 Guerra and Toninelli



While for fully connected models the whole physical content of the
theory is encoded in the probability distribution of the overlaps, (1) all multi-
overlaps play an essential role in the present case. (7, 8) In Section 4 we will
show how, when the limit of infinite connectivity is suitably performed, the
multi-overlaps with n > 2 become inessential.

3. THE ROLE OF THE MULTI-OVERLAPS

An important ingredient of the methods employed in ref. 3 is a smart
use of the properties of the Poisson random variables. Indeed, while the
choice of the Poisson distribution for the number taN of terms appearing in
the Hamiltonian (1) is in principle not essential (any other random variable
sharply concentrated around the value aN would yield an equivalent
model, in the infinite volume limit), it turns out to be a great technical
simplification. The basic elementary properties one employs, for the distri-
bution function of a Poisson random variable tl of parameter l > 0, are

kp(k, l)=lp(k−1, l) (13)

and

d
dl
p(k, l)=−p(k, l)+p(k−1, l)(1−dk, 0). (14)

In a sense, Eq. (13) replaces the identity

EJF(J)=EFŒ(J), (15)

which plays a fundamental role in the study of the fully connected models,
and which holds for any smooth function F if J is a Gaussian standard
random variable.

For instance, let us show how Eq. (13) allows to express the internal
energy of the Viana–Bray model as a sum of simple averages involving
multi-overlaps. For an analogous computation, see ref. 3. One has

−
“

“b
AN(b, a)=

OHP

N
=−

1
N

C
.

k=1
p(k, aN) C

k

m=1
OJmsimsjmPk, (16)

where O .Pk denotes the average where the value of the random variable taN
has been fixed to k. Then, using property (13),

OHP

N
=−

1
N

C
.

k=1
kp(k, aN)OJksiksjkPk=−a C

.

k=1
p(k−1, aN)OJksiksjkPk.

(17)
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Now, we use the identity

OJksiksjkPk=EwJ(Jksiksjk )k=E
wJ(Jksiksjk exp(bJksiksjk ))k−1
wJ(exp(bJksiksjk ))k−1

, (18)

to rewrite (17) as

OHP

N
=−a C

.

k=0
p(k, aN) E

wJ(Jsisj exp(bJsisj))k
wJ(exp(bJsisj))k

, (19)

where the random variables J, i, j denote independent copies of Jm, im, jm,
respectively. Finally, recalling that i and j are uniformly distributed over
{1,..., N}, one finds

OHP

N
=−aE

;N
i, j=1

N2
wJ(Jsisj exp(bJsisj))
wJ(exp(bJsisj))

(20)

=−
a

N2
C
N

i, j=1
EJ

tanh(bJ)+wJ(sisj)
1+tanh(bJ) wJ(sisj)

. (21)

Notice that we have employed the identity

ebJsisj=cosh(bJ)+sisj sinh(bJ) (22)

in the last step. Thanks to (3), |tanh(bJ)| [ tanh b < 1 so that the expres-
sion in (21) can be expanded in absolutely convergent Taylor series around
tanh(bJ)=0. Recalling the definition of the multi-overlaps and the sym-
metry of the random variable J, one finally finds

−
“

“b
AN(b, a)=

OHP

N

=−aE(J tanh(bJ))

+a C
.

n=0
Oq21 · · · 2n+2P E{J tanh2n+1(bJ)(1− tanh2(bJ))}.

(23)

Indeed, it follows from the definitions (9), (10) of the averages WJ(.) and
O .P that

1
N2

C
N

i, j=1
Ew2nJ (sisj)=

1
N2

C
N

i, j=1
WJ(s

(1)
i · · ·s

(2n)
i s

(1)
j · · ·s

(2n)
j )=Oq21 · · · 2nP.

(24)
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In the particular case where Jm=±1, the above expression (23) reduces to

−
“

“b
AN(b, a)=−a tanh b+a C

.

n=0
(tanh b)2n+1 (1− tanh2b)Oq21 · · · 2n+2P.

(25)

4. THE INFINITE CONNECTIVITY LIMIT AND THE SK MODEL

In this section, we discuss the relationship between the Viana–Bray
and the fully connected SK model. As it was already observed in refs. 7
and 8, the latter is obtained when the average connectivity a tends to
infinity, provided that the strength of the couplings Jm, or equivalently the
inverse temperature, is suitably rescaled to zero. Let us discuss this point in
greater detail. To this purpose, recall that the SK model in zero external
field is defined by the Hamiltonian

HS.K.N (s; J)=−
1

`N
C

1 [ i < j [N
Jijsisj, (26)

where the couplings Jij are i.i.d. centered Gaussian random variables
of unit variance. Now, we want to compare the Viana–Bray model, with
parameters b and a, with the SK model, at an inverse temperature bŒ
defined as

bŒ2=2aE tanh2(bJ). (27)

In particular we show that, in the limit aQ., bQ 0 with bŒ=const, one
has

3 lim
NQ.

1
N
E ln ZN(b, a;J)4||0

aQ. 3 lim
NQ.

1
N
E ln ZS.K.N (bŒ; J)4 . (28)

To this purpose, let 0 [ t [ 1 and define an auxiliary partition function
ZN(t) as

ZN(t)=C
{s}

exp 1b C
taNt

m=1
Jmsimsjm+bŒ

=1−t
N

C
1 [ i < j [N

Jijsisj 2 . (29)

Of course, for t=1 one recovers the partition function (4) of the diluted
model, while for t=0 one has the partition function of the fully connected
model, at inverse temperature bŒ. The t derivative of 1/NE ln ZN(t) can be
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performed along the lines of the computation of “bAN(b, a) in the previous
section, with the result

d
dt
1
N
E ln ZN(t)=a 1E ln cosh(bJ)−

1
2

C
.

n=1

E tanh2n(bJ)
n

Oq21 · · · 2nP2

−
bŒ2

4
(1−Oq212P) (30)

=1aE ln cosh(bJ)−
bŒ2

4
2−a
2

C
.

n=2

E(tanh2n(bJ))
n

Oq21 · · · 2nP.
(31)

The term (30) derives from the t dependence of the Poisson random vari-
able taNt in (29), while (31) comes from the `1−t factor which multiplies
the SK Hamiltonian. Before we proceed, let us notice that we have proved
the inequality, uniform in N,

d
dt
1
N
E ln ZN(t) [ aE ln cosh(bJ)−

bŒ2

4
, (32)

whose implications will be discussed below. Now, it is easy to see that the t
derivative we are considering in (30) vanishes uniformly in N for bQ 0,
aQ., if the constraint (27) is satisfied. Indeed, for aQ. Eq. (27) reduces
to

2ab2EJ2=bŒ2+O 11
a
2 , (33)

so that

aE ln cosh(bJ)−
bŒ2

4
=aE ln 11+b

2J2

2
2−bŒ

2

4
+O 11

a
2=O 11

a
2 (34)

and

a

2
C
.

n=2

E tanh2n(bJ)
n

Oq21 · · · 2nP [
a

2
C
.

n=2

b2n

n
||0
aQ. 0, (35)

which concludes the proof of (28). L
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5. THE REPLICA SYMMETRIC BOUND AND THE ANNEALED

REGION

In ref. 6 it was proven that the Parisi solution for the SK model, with
an arbitrary number of levels of replica symmetry breaking, is a lower
bound for the free energy, at any temperature. Along the same lines, this
result was extended in ref. 3 to the case of diluted models. In this context,
one has to face the additional difficulty that, even at the level of the replica
symmetric approximation, the Parisi order parameter is a function (8) (the
probability distribution of the effective field) rather than a single number,
as it happens instead for fully connected models. (1) In the present section,
we recall briefly the replica symmetric bound for the Viana–Bray model
under consideration, and we discuss the high temperature or low connecti-
vity phase, where this bound actually gives the correct limit.

Let g be an arbitrary symmetric random variable (we assume its dis-
tribution to be regular enough to guarantee that all expressions below are
well defined), and define the random variable u as

tanh(bu)=tanh(bJ) tanh(bg). (36)

Here, J is distributed like any of the couplings Jm and is independent of
them (as well as of g). For given b and a, the replica symmetric trial func-
tional FRS(b, a; g) is defined as

FRS(b, a; g)=ln 2+aE ln cosh(bJ)+E ln cosh 1b C
t2a

a=1
ua 2

−2aE ln cosh(bu)

−
a2
E

ln(1− tanh2(bJ) tanh2(bg1) tanh2(bg2)). (37)

Here, ua are independent copies of u and g1, g2 are independent copies of g.
Then, one has (3)

1
N
E ln ZN(b, a;J) [ inf

g
FRS(b, a; g)+O 1

1
N
2 , (38)

where the infimum is taken over the space of symmetric random variables g.
It is not difficult to see, computing the functional derivative of FRS(b, a; g)
with respect to the probability distribution P(g) of g, that a sufficient
condition of extremality for the replica symmetric functional is (8)

g=d C
t2a

a=1
ua=

1
b

C
t2a

a=1
tanh−1(tanh(bJa) tanh(bga)), (39)
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where the equality holds in distribution. It is clear that the above equation
always admits the trivial solution g concentrated at the value zero, i.e., with
P(g)=d(g). In this case, it follows from Eqs. (36), (37) that

FRS(b, a; g — 0)=ln 2+aE ln cosh(bJ) (40)

which corresponds to take the expectation with respect to the random
coupling signs before the logarithm, in the definition (7) of AN(b, a):

FRS(b, a; 0)=
1
N
E ln E{sign(Jm)}ZN(b, a;J). (41)

In the following, we call −1/bFRS(b, a; 0) the ‘‘annealed free energy,’’
even if strictly speaking in (41) we are performing an annealed average only
on the signs of the couplings and not on their absolute values. The follow-
ing result shows that, in a certain region of the parameters b and a, the
trivial solution of (39) is actually the only one:

Proposition 1. If

2aE tanh2(bJ) < 1 (annealed region), (42)

the only symmetric random variable g satisfying Eq. (39) is the degenerate
one: P(g)=d(g).

Notice that, for a < 1/2, the annealed region extends up to b=..

Proof of Proposition 1. Let

f(v)=Ee ivg (43)

be the characteristic function of g, which can be rewritten, thanks to con-
dition (39) and to the Poisson distribution of t2a, as

ln f(v)=2a 1E exp 1 i v
b

tanh−1(tanh(bJ) tanh(bg))2−12 . (44)

This implies that

|ln f(v)| [ 2a |v|`2aE tanh2(bJ), (45)

where we used the fact that

Eg2 [ 2a,
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as it easily follows from (39) and from |J| [ 1. Now, one can iterate the
procedure, replacing the random variable g which appears at the right hand
side of (44) with the expression given by Eq. (39), and so on. At the nth
step of the iteration one has the bound

|ln f(v)| [ 2a |v| (2aE tanh2(bJ))n/2. (46)

which goes to zero when nQ., if condition (42) holds. L

On the other hand it is easy to realize that, outside the annealed
region, the choice of the identically vanishing g does not realize the
infimum in (38). Indeed, consider even the simple case of a two-valued
random variable g with distribution

P(g)=1
2 (d(g−g0)+d(g+g0)).

When g0 4 0, one finds

FRS(b, a; g)−FRS(b, a; g — 0)=
a

2
b4g40(1−2aE tanh2(bJ))+O(g60),

(47)

which is negative if (42) does not hold.
It is interesting to observe that breaking of annealing outside the

region (42) can also be proved through a comparison with the SK model.
Indeed, integration of the inequality (32) with respect to t between 0 and 1
gives

ln 2+aE ln cosh(bJ)−
1
N
E ln ZN(b, a;J)

\ ln 2+
bŒ2

4
−
1
N
E ln ZS.K.N (bŒ; J),

i.e., the difference between the quenched and the annealed free energies is
larger (in absolute value) for the diluted model than for its fully connected
counterpart if b, a, and bŒ are related by the condition (27). Therefore,
since it is well known that

lim
NQ.

1
N
E ln ZS.K.N (bŒ; J) < ln 2+

bŒ2

4
(48)

for bŒ > 1, one has immediately breakdown of annealing for the Viana–
Bray model, when bŒ2=2aE tanh2(bJ) > 1.
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6. CONTROL OF THE ANNEALED REGION

In the present section we prove that annealing actually holds for the
Viana–Bray model in the region of parameters (42), i.e., that

Theorem 1. For 2aE tanh2(bJ) < 1,

1
N
E ln ZN(b, a;J)=ln 2+aE ln cosh(bJ)+O 1 1

N
2 . (49)

A related result was proven in ref. 13 by means of a cluster (or low
connectivity) expansion.

We prove the theorem via a suitable adaptation of the ‘‘quadratic
replica coupling’’ method we introduced in ref. 10 for the SK model. While
the above result can also be obtained through the ‘‘second moment
method,’’ (14) which consists in showing that

1
N

ln E(ZN)2=
1
N

ln(EZN)2+o(1), (50)

the quadratic method we employ allows us to obtain self-averaging of the
multi-overlaps in a stronger form, and to prove limit theorems for the fluc-
tuations, as shown in the next two sections.

Consider a system of two coupled replicas of the model, defined by the
partition function

Z (2)N (b, a, l;J)= C
{s 1, s 2}

e−bHN(s
1, a;J)−bHN(s

2, a;J)+N l
2
q212, (51)

where l \ 0. Notice that the quadratic interaction gives a large weight to
the pairs of configurations whose overlap is different from zero. Like in
ref. 10 the idea is to show that, if l is not too large, the interaction does not
modify the infinite volume free energy density, so that q12 must be typically
close to zero. Indeed, we can prove

Theorem 2. In the region

(l+2aE tanh2(bJ)) < 1, l, a \ 0, (52)

one has

1
2N
E ln Z (2)N (b, a, l;J)=ln 2+aE ln cosh(bJ)+O 1 1

N
2 (53)
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and

Oq21 · · · 2nP [ Oq212P=O 1
1
N
2 . (54)

Of course, this result implies the previous Theorem 2 since, for l=0,

1
2N
E ln Z (2)N (b, a, 0;J)=

1
N
E ln ZN(b, a;J).

Proof of Theorem 2. First of all, since (3)

“

“a

1
N
E ln ZN(b, a;J)=E ln cosh(bJ)−

1
2

C
.

n=1

E tanh2n(bJ)
n

Oq21 · · · 2nP,
(55)

and

Oq21 · · · 2nP=
1
N2

C
N

i, j=1
Ew2nJ (sisj) [

1
N2

C
N

i, j=1
Ew2J(sisj)=Oq212P, (56)

one can write

“

“a
1FRS(b, a; 0)−

1
N
E ln ZN 2 [

Oq212P
2
E ln(1− tanh2(bJ))−1. (57)

Therefore, using convexity of ln Z (2)N with respect to l and the identity

“

“l

1
2N
E ln Z (2)N (b, a, l;J):

l=0
=
1
4
Oq212P, (58)

which follows from definition (51), one has

“

“a
1FRS(b, a; 0)−

E ln ZN
N
2

[
2E ln(1− tanh2(bJ))−1

l
1E ln Z (2)N (l)

2N
−
E ln ZN
N
2 . (59)

Next, we need an upper bound for 1/(2N) E ln Z (2)N in terms of
FRS(b, a; 0). To this purpose, we take l to depend on a as l(a)=
l0−2aE tanh2(bJ), and we compute
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d
da
1
2N
E ln Z (2)N (b, a, l(a);J)

=−
1
2
E tanh2(bJ)Oq212Pa, l(a)+E ln cosh(bJ)

+
1
4N2

C
N

i, j=1
E ln[(1+tanh2(bJ) Wa, l(a)(s

1
i s
1
js
2
i s
2
j ))

2

−4 tanh2(bJ) w2a, l(a)(sisj)]. (60)

The computation is very similar in spirit to that of “bAN in Section 3, the
essential ingredients to be employed being Eq. (14) and the symmetry of J.
Here, the averages refer to the coupled system with parameters a, l(a).
Then,

d
da
1
2N
E ln Z (2)N (b, a, l(a);J)

[−
1
2
E tanh2(bJ)Oq212Pa, l(a)+E ln cosh(bJ)

+
1
2

ln(1+E tanh2(bJ)Oq212P) (61)

[ E ln cosh(bJ), (62)

where we used Jensen’s inequality to take expectation inside the logarithm,
together with the elementary estimate

ln(1+x) [ x.

Therefore, integrating between 0 and a one has

1
2N
E ln Z (2)N (b, a, l;J) [ aE ln cosh(bJ)+

1
2N

ln C
{s 1, s 2}

eNl0 q
2
12/2, (63)

since at a=0 only the quadratic replica coupling survives in the Hamilto-
nian. At this point, the proof proceeds exactly like in ref. 10: one intro-
duces an auxiliary Gaussian standard random variable z with probability
distribution

dm(z)=e−z
2/2 dz

`2p

544 Guerra and Toninelli



and performs a simple rescaling, in order to linearize the dependence on q12
of the exponent:

1
2N

ln C
{s 1, s 2}

eNl0 q
2
12/2=

1
2N

ln C
{s 1, s 2}

F e `l0N q12z dm(z) (64)

=ln 2+
1
2N

ln F =N
2p

expN 1−y
2

2
+ln cosh(y`l0)2 .

(65)

For l0=l+2aE tanh2(bJ) < 1, one can employ the inequality

2 ln cosh x [ x2 (66)

to deduce, from Eqs. (63) and (65),

1
2N
E ln Z (2)N (b, a, l;J) [

1
N

ln EZN(b, a;J)+
1
4N

ln
1
1−l0

, (67)

so that Eq. (59) reduces to

“

“a
1FRS(b, a; 0)−

E ln ZN
N
2

[
2E ln(1− tanh2(bJ))−1

l
1FRS(b, a; 0)−

E ln ZN
N
2+O(N−1). (68)

Since

1FRS(b, a; 0)−
E ln ZN
N
2:
a=0
=0,

Eq. (68) implies, through a straightforward application of Gronwall’s
lemma, that

1FRS(b, a; 0)−
E ln ZN
N
2=O(N−1), (69)

for 2aE tanh2(bJ) < 1.
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Statement (53) then follows if one notices that, thanks to (67), (69) and
to monotonicity of the free energy with respect to l,

FRS(b, a; 0)+O(N−1)=
1
N
E ln ZN [

1
2N
E ln Z (2)N (l)

[ FRS(b, a; 0)+O(N−1) (70)

in the region (52). Finally, statement (54) follows from (53) and from con-
vexity of E ln Z (2)N with respect to l. L

7. MULTI-OVERLAP FLUCTUATIONS IN THE ANNEALED REGION

In the previous section, we proved that the multi-overlap among any
2n configurations s (a1),..., s (a2n) is typically small, in the annealed region. To
study the infinite volume behavior of the multi-overlap fluctuations, we
define

ga1 · · · a2nN =`N qa1 · · · a2n —
1

`N
C
N

i=1
s (a1)i · · ·s

(a2n)
i .

(Due to symmetry under permutation of the indices ai, we will always
assume them to be ordered as a1 < a2 < · · · < a2n.) Then, like for the SK
model at high temperature, (11, 15, 16) one can prove that the rescaled (multi)-
overlaps behave like independent centered Gaussian variables, in the infi-
nite volume limit. Indeed, we prove the following

Theorem 3. In the annealed region (42), the variables ga1 · · · a2nN con-
verge in distribution, as NQ., to centered Gaussian variables ga1 · · · a2n
with variance

O(ga1 · · · a2n)2P=
1

1−2aE tanh2n(bJ)
. (71)

Remark 1. Notice that, when the boundary of the annealed region
(42) is approached, only the variance of ga1a2 diverges.

Remark 2. With the same method we employ to prove Theorem 3,
it is possible to prove also that the limit random variables are jointly
Gaussian and mutually independent, i.e.,

Oga1 · · · a2ngb1 · · · b2nP=0 if ,i: ai ] bi (72)

Oga1 · · · a2nga1 · · · a2nŒP=0 if n ] nŒ. (73)
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Proof of Theorem 3. We will prove only that

fN(u) — Oe iug
12
NP0 exp 1 − u2

2(1−2aE tanh2(bJ))
2 . (74)

The extension of (71) to n > 1 involves heavier notations but no additional
difficulty.

The proof is based on the cavity method, (1) which in essence consists in
analyzing what happens when one removes one of the spins, thereby trans-
forming the original system into one of size N−1. For applications of the
cavity method in the context of mathematical physics, we refer to refs. 11,
17, and 18, and ref. 4. As in ref. 11, the idea is to write down a linear dif-
ferential equation for fN(u), in the thermodynamic limit. First of all, using
symmetry among sites one can write

“ufN(u)=iOg
12
N e
iug12NP=i`NOs1Ns

2
Ne
iug12NP. (75)

Notice that, thanks to Theorem 2 of the previous section,

|“ufN(u)| [ O(g12N )
2P

1
2 [ C, (76)

uniformly in N. Then, defining

uŒ=u`1−1/N,

one has

“ufN(u)=i`NOs1Ns
2
N exp(ius1Ns

2
N/`N+iuŒg

12
N−1)P (77)

=−ufN(u)+i`NOs1Ns
2
Ne
iuŒg12N−1P+o(1) (78)

where the term o(1), vanishing for NQ., arises from the expansion of
exp(ius1Ns

2
N/`N) around u=0 and from the replacement uŒQ u. Now

consider the set

A={J: ‹m: im=jm=N}, (79)

where im, jm are the random site indices appearing in (1). Since the proba-
bility of A is very close to one,

P(A)=1−O(1/N),
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one can write

i`NOs1Ns
2
Ne
iuŒg12N−1P=i`NOs1Ns

2
Ne
iuŒg12N−11AP+o(1) (80)

where 1A is the indicator function of the set A. Next, we single out all
terms −JnsinsN in the Hamiltonian (1) involving the Nth spin (the number
of these terms is a Poisson variable t2a of mean value 2a) and we rewrite
(80) as

i`N E
WŒ(e i uŒ g

12
N−1Av s1Ns

2
N exp(b;2

a=1 s
a

N ;t2a
n=1 Jns

a

in
))

WŒ(Av exp(b;2
a=1 s

a

N ;t2a
n=1 Jns

a

in
))

— i`N E
A
B
,

(81)

where Av denotes average on the two-valued unbiased variables saN=±1
and WŒ(.) is the Gibbs average for a system with N−1 spins and connecti-
vity parameter aŒ=a(1−1/(N−1)).3 Of course, since we are restricting

3 This is because the average number of terms appearing in the modified Hamiltonian of the
N−1 spin system is Na−2a — aŒ(N−1).

to the set A, the indices in are i.i.d. random variables uniformly distributed
on {1,..., N−1}. Now, we show that the denominator B in (81) can be
replaced by the random variable

B̃=D
t2a

n=1
cosh2(bJn), (82)

by neglecting an error term which vanishes in the thermodynamic limit. To
this purpose we use the obvious identity

E
A

B
=2E

A

B̃
−E
AB

B̃2
+E
A

B
1 B̃−B
B̃
22, (83)

as it was done in ref. 18. As we will show below, the last term in the r.h.s.
vanishes for NQ.. The first term is easily computed. Indeed, recalling the
mutual independence of the variables Jn, in and using the formula

Eatl=e−l(1−a),

which holds for a ] 0 if tl is a Poisson random variable of mean l, one
finds

i`N E
A

B̃
=i`N EWŒ 3e iuŒg12N−1 sinh 12aE tanh2(bJ)

g12N−1

`N−1
24 .
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Then, expanding the sinh(...) at first order around zero and recalling that

sup
N

O(g12N )
2P <.,

one has

i`N E
A

B̃
=2iaE tanh2(bJ) EWŒ{e iuŒg

12
N−1g12N−1}+o(1)

=2aE tanh2(bJ) “ufN(u)+o(1). (84)

As for the second term in (83), one finds again

i`N E
AB

B̃2
=2aE tanh2(bJ) “ufN(u)+o(1). (85)

Finally, we show that the last term can be neglected. First of all, one has

B \ 1,

as it follows from Jensen inequality, interchanging the thermal average WŒ
and the exponential in the definition of B. Therefore,

`N :E A
B
1 B̃−B
B̃
22 : [`N Ee2bt2a 11−B

B̃
22. (86)

The computation of (86) proceeds in analogy with that of EA/B̃. In this
case, however, one finds that the dominant term in the Taylor expansion is
of order

1

`N
O(g12N )

2P=o(1). (87)

Therefore, recalling Eqs. (83)–(85), together with Eq. (77), we find that
fN(u) solves the linear differential equation

(1−2aE tanh2(bJ)) “ufN(u)=−ufN(u)+o(1) (88)

which, together with the obvious initial condition

fN(0)=1, (89)

implies the result (74). L
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8. FREE ENERGY FLUCTUATIONS

Is easy to realize that the Viana–Bray model resembles locally a spin
glass model on a tree, where the number of branches starting at each node
is a Poisson random variable of parameter 2a and the couplings associated
to the branches are i.i.d. random variables Jm. The non-triviality of the
Viana–Bray model arises from the presence of loops of length O(lnN) in
the underlying graph. For the model on the tree and without magnetic
field, the computation of the partition function for any disorder realization
is elementary,

Z treeN (b, a;J)=2
N D
taN

m=1
cosh(bJm), (90)

so that

1
N
E ln Z treeN (b, a;J)=ln 2+aE ln cosh(bJ). (91)

Theorem 1 shows that, in the annealed region, the Viana–Bray model
behaves like its tree-like counterpart, as far as only the infinite volume limit
of the free energy density is concerned. However, the difference between
the two models becomes evident if one looks at the difference between the
respective free energies, on the scale 1/N. Indeed, the following result
holds:

Theorem 4. Define the random variable

f̂N(b, a;J) — ln ZN(b, a;J)−1N ln 2+C
taN

m=1
ln cosh(bJm)2 , (92)

where J1,..., JtaN are the same couplings which appear in the Hamiltonian
(1). In the annealed region (42) f̂N(b, a;J) converges in distribution, as
NQ., to a non-Gaussian random variable f̂ with characteristic function

E exp(isf̂)=exp 3 −1
2

C
.

n=1
is(is−1) · · · (is−(2n−1))

ln(1−2aE tanh2n(bJ))
(2n)!

4 .
(93)

The variance of the limit random variable diverges when the boundary of
the annealed region is approached.
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Remark. It is not difficult to check that, when the infinite connecti-
vity limit is performed as in Section 4, the limit random variable becomes
Gaussian (the terms of order higher than s2 disappear in the series) and one
recovers the well known result of ref. 19 for the fluctuations of the SK free
energy at zero external field and bŒ < 1.

Proof of Theorem 4. The idea of the proof is to write down a linear
differential equation for the characteristic function

fN(a, s)=E exp(isf̂N). (94)

Of course, for a=0 both the Viana–Bray and the tree model consist in an
empty graph, so that

fN(0, s)=1. (95)

As for the a derivative, the computation can be performed along the lines
of the computation of “bAN(b, a) in Section 3, with the result

“fN(a, s)
“a

=−NfN(a, s)+
1
N

C
N

i, j=1
E e isf̂N(1+tanh(bJ) wJ(sisj)) is. (96)

Since |tanh(bJ)| < tanh b < 1, one can expand the r.h.s. in an absolutely
convergent Taylor series, using the formula

(1+x)a=1+C
.

n=1

a(a−1) · · · (a−(n−1))
n!

xn

and write

“fN(a, s)
“a

=C
.

n=1
E tanh2n(bJ)

is(is−1) · · · (is−(2n−1))
(2n)!

Ee isf̂WJ(Nq
2
1 · · · 2n).

(97)

Notice that, thanks to Theorem 2,

ONq21 · · · 2nP [ ONq212P [ sup
N

ONq212P <.

and the derivative in (97) can be bounded uniformly in N. Next, we can
replace WJ(Nq

2
1 · · · 2n) with ONq21 · · · 2nP. Indeed, thanks to Theorem 3 of the

previous section,

O(WJ(Nq
2
1 · · · 2n)−ONq

2
1 · · · 2nP)

2P

=O(g1 · · · 2nN )2 (g2n+1...4nN )2P−O(g1 · · · 2nN )2P2=o(1). (98)
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Therefore, denoting by f the infinite volume limit of fN, one has

“f(a, s)
“a

=C
.

n=1

is(is−1) · · · (is−(2n−1))
(2n)!

E tanh2n(bJ)
1−2aE tanh2n(bJ)

f(a, s), (99)

from which the statement of the theorem follows after integration with
respect to a. L

9. OUTLOOK AND CONCLUSIONS

In this paper, we have provided a complete picture of the high tem-
perature or low connectivity phase of the Viana–Bray model without
magnetic field, where annealing holds. Breaking of annealing is forecasted
by the divergence of fluctuations of the free energy density (on the scale
1/N) and of the two-replica overlap (on the scale 1/`N). On the other
hand, the fluctuations of the multi-overlap among 2n \ 4 configura-
tions show no singularity when the boundary of the annealed region is
approached.

The high temperature phase of the diluted p-spin model with p > 2 can
be studied with the same techniques, but in this case one does not control
the whole expected annealed region. On the other hand, the methods we
presented here do not extend to the study of the replica symmetric region
of the K-sat model, or of the diluted mean field model in presence of a
magnetic field. In this case annealing does not hold, even at high tempera-
ture, and the random variable g which realizes the infimum of the replica
symmetric functional is not trivial, as it is well known (see, for instance,
ref. 20). We plan to report on this subject in a future paper.

APPENDIX A. SELF-AVERAGING OF FREE ENERGY AND GROUND

STATE ENERGY DENSITIES

In this section we prove an upper bound, exponentially small in N and
independent of b, for the fluctuations of the disorder dependent free energy
density of the Viana–Bray model. Independence of b implies that the
bound holds also for the fluctuations of the ground state energy density.
Similar results have been known for a long time in the case of fully con-
nected mean field spin glass models (for instance, see ref. 14 and references
therein) and for some random optimization problems. (21, 22)

Theorem 5. For any value of b, a and N, one has

P 1 : 1
Nb

ln ZN−
1
Nb
E ln ZN : \ u2 [ 2eN(u−a(1+

u
a) ln(1+

u
a)). (100)
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Remarks. The theorem can be immediately extended to the more
general class of diluted spin glass models considered in ref. 3. In particular,
for the diluted p-spin model (23) with p \ 3 the above result holds without
any modification, while for the K-sat model one has to replace (100) by

P 1 ln ZN
Nb

−
E ln ZN
Nb

[ −u2 [ eN(u−a(1+ua) ln(1+ua)) u > 0 (101)

P 1 ln ZN
Nb

−
E ln ZN
Nb

\ u2 [ eN(−u−a(1− ua) ln(1− ua)) 0 < u < a (102)

P 1 ln ZN
Nb

−
E ln ZN
Nb

\ u2=0 u \ a. (103)

( The latter is a simple consequence of the fact that, for the K-sat,
1/N ln ZN [ ln 2 for any disorder realization, and that 1/NE ln ZN \

ln 2−ab, as it is easily verified from the definition of the model.) In par-
ticular, Eqs. (101)–(102) allow to recover the bound given in ref. 24 for
the fluctuations of the minimal fraction of unsatisfied clauses in the K-sat
problem.

Proof of Theorem 5. We sketch just the main steps in the proof,
since it is very similar in spirit to that given for fully connected models in
refs. 14 and 25, the main difference being that the role of Gaussian inte-
gration by parts is replaced here by the properties (13), (14) of Poisson
random variables.

Introduce the interpolating parameter 0 [ t [ 1 and define, for s ¥ R,

jN(t)=ln E1 exp{sE2 ln ZN(t)}, (104)

where

ZN(t)=C
{s}

exp b 1 C
t
1
2aNt

m=1
J1msi1msj1m+ C

t
2
2aN(1−t)

n=1
J2nsi2nsj2n
2 . (105)

Here, all variables with upper index 1 are independent from those with
index 2, and Ea denotes the average

Ea(.)=EtaE{Jam}E{iam}E{jam}(.), a=1, 2.

The motivation for the introduction of jN(t) is the identity

exp{jN(1)−jN(0)}=E exp{s( ln ZN−E ln ZN)}. (106)
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Since we want to bound from above the r.h.s. of (106), we compute the t
derivative of jN(t). After some straightforward computations, one finds

j −N(t)=a
;N
i, j=1

N
E1{e sE2 ln ZN(t)EJ(e sE2 ln w(e

bJsisj)−1−sE2 ln w(ebJsisj))}
E1 exp{sE2 ln ZN(t)}

and, thanks to the trivial bounds

−b [ E2 ln w(ebJsisj) [ b

one has

|j −N(t)| [ aN(e
|s| b−1−|s| b). (107)

Putting together Eqs. (107) and (106), employing Tchebyshev’s inequality
and optimizing on s, one finally finds the statement of the theorem. L
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